
LLNL-JRNL-498898

Nonlinear effects in the combined
Rayleigh-Taylor/Kelvin-Helmholtz
instability

B. J. Olson, S. K. Lele, J. Larsson, A. W. Cook

September 12, 2011

Physics of Fluids



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Nonlinear effects in the combined Rayleigh-Taylor/Kelvin-Helmholtz instability

Britton J. Olson∗ and Sanjiva K. Lele
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA

Johan Larsson
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA

Andrew W. Cook
Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA

The combined Rayleigh-Taylor/Kelvin-Helmholtz instability is studied in the early nonlinear
regime. Specifically, the effect of adding mean shear to a gravitationally unstable configuration
is investigated. While linear stability theory predicts that any amount of mean shear would in-
crease the growth rate beyond the Rayleigh-Taylor value, numerical (large eddy) simulations show
a more complex and non-monotonic behavior where small amounts of mean shear in fact decrease
the growth rate. A velocity scale for the combined instability is proposed from linear stability argu-
ments, and is shown to effectively collapse the growth rates for different configurations. The specific
amount of mean shear that minimizes the peak growth rate is identified, and the physical origins of
this non-monotonic behavior are investigated.

I. INTRODUCTION

The canonical Rayleigh-Taylor (RT) instability is driven by a misalignment of the density gradient and the pressure
gradient induced by a body force (e.g., gravity or system acceleration). With heavier fluid initially sitting atop lighter
fluid under downward gravitational force, perturbations on the unstable interface begin to grow. The canonical Kelvin-
Helmholtz (KH) instability, on the other hand, occurs at the shear layer between two fluids with different horizontal
velocities. These instabilities, both individually and combined, are of great interest in plasma physics applications
such as Inertial Confinement Fusion (ICF) and Type-1a supernovae collapse. For example, the spherical interface of
a fusion capsule can become RT unstable and fail to contain the fusion reaction adequately [5].

The combined RT/KH problem considered in this study is sketched in Fig. 1. An initially thin interface in the
x− y plane separates the upper and lower fluids with densities ρ1 and ρ2, respectively, where ρ1 > ρ2. The Atwood
number is defined as A ≡ (ρ1 − ρ2) / (ρ1 + ρ2). The interface is perturbed with characteristic wavelength λ0. The
gravitational acceleration g acts in the negative z direction, while the imposed velocity difference ∆V acts in the x
direction. Fig. 2 shows differences in the mixing layer evolution as shear is incrementally added to the RT unstable
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FIG. 1: Sketch of the combined Rayleigh-Taylor/Kelvin-Helmholtz (RT/KH) instability.
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FIG. 2: Isovolumes of density showing differences between the unstable interface in a pure RT (upper left), a high shear (upper
right) and an intermediate shear case.

configuration. This setup is identical, omitting the magnetic field, to the case studied by Zang et al[12]. It also models
the experiment performed by Snider and Andrews [13], where hot and cold streams of water at different speeds mix
past the edge of a splitter plate.

Several studies in the literature (e.g., [1–3, 11, 12]) address the combined RT/KH problem through linear stability
analysis. For a sharp interface, the linear analysis involves solutions of the form

ψ(x, y, z, t) = ψ̂(z) exp [γt+ i(kxx+ kyy − ωt)] , ψ = ρ, u, v, w ,

η(x, y, t) = η̂ exp [γt+ i(kxx+ kyy − ωt)] ,

where η(x, y, t) is the height of the perturbed interface. The growth rate is

γ =

√
1−A2

4
∆V 2

x k
2 +Agk , ∆Vx =

kx
k

∆V , (1)

where k =
√
k2x + k2y is the magnitude of the wave vector and the reduced velocity-difference ∆Vx has been introduced

for modes not aligned with the imposed shear. The prediction of linear stability theory is clearly that, for given
parameters (A, g, k) specifying the RT-problem, the linear growth rate γ increases monotonically with the imposed
shear ∆V . As will be shown below, this is not true in the nonlinear regime.

The fact that applied shear can decrease the RT growth rate has been observed in prior studies by Guzdar et. al. [3]
and later by Shumlak and Roderick[11]. These studies used analytical density and velocity profiles with finite interface
widths which are on the order of the initial disturbance wavelength. In both cases, linear stability theory predicts the
stabilization of the RT interface by the addition of shear flow. In our case, however, we use a discontinuous interface
between two uniform states of density and horizontal velocity. This configuration represents a special case in the
prior analysis where the interface thickness goes to zero. In such a case, as we have seen, LST does not predict a
stabilization of the RT interface.

In the present study we focus on the early nonlinear regime before full transition to turbulence. Large eddy
simulation (LES) is used to compute the evolution into the nonlinear regime. The accuracy of the LES is established
by comparison to direct numerical simulation (DNS) and a suite of verification problems, where the effects of finite
resolution, box size, and statistical sampling size, are presented.
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II. METHODOLOGY

The governing equations for two incompressible miscible fluids with a gravitational body force are (cf. Ref. [8])

∂ρ

∂t
+ uj

∂ρ

∂xj
= −ρ∂uj

∂xj
= ρ

∂

∂xj

(
D

ρ

∂ρ

∂xj

)
, (2a)

∂ρui
∂t

+
∂ρuiuj
∂xj

= ρgi −
∂p

∂xi
+
∂τij
∂xj

, (2b)

where

τij = µ

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

]
is the viscous stress tensor and µ is the shear viscosity. The species diffusivity D gives rise to a non-solenoidal flow [6].

Gravity acts in the negative z direction while the imposed velocity difference is in the x direction. The horizontal
x and y directions are periodic. The initial interface height η(x, y, 0) is taken as random with the Gaussian spectrum

Eη(k) ∼ exp
[
−(k − k0)2/(2σ2)

]
, (3)

where k0 is the wavenumber at peak energy; this is taken as corresponding to the 24th mode in the periodic x and y
directions. The width of the Gaussian is set by taking σ2 = k20/9. The length scale of the peak initial perturbation is
defined as λ0 ≡ 2π/k0.

The mixing rate is computed as the time-derivative ḣ(t) of the interface thickness h(t), which is defined here
following Cabot and Cook [8] as

h(t) ≡
∫ ∞
−∞

2 min

{
ρ(z, t)− ρL

∆ρ
,
ρH − ρ(z, t)

∆ρ

}
dz , (4)

where ρ(z, t) implies an average over the horizontal directions and ∆ρ ≡ ρH − ρL is the density difference.
The equations are solved using a 10th-order compact central difference scheme for spatial derivatives, and integrated

in time using a 3rd-order Adams-Bashforth-Moulton predictor corrector method[7]. The Reynolds number is defined

as Re ≡ hḣ/ν, and the Schmidt number was set to Sc = 0.7.
The present study is focused on instability and mixing in the high-Reynolds number regime where the viscous

length scales are significantly smaller than the energy-containing structures. We thus consider relatively high Reynolds
numbers of Re = hḣ/ν ≈ 15000 in this study, and close the equations with subgrid terms following Cook [9]. The
numerical method and the LES regularization model were chosen to maximize the range of scales captured and to
minimize the numerical dissipation.

For this problem of miscible fluids, and to minimize numerical errors at the early times, the initial interface is
specified as diffuse using a hyperbolic tangent function. The thickness of the diffuse interface is one order of magnitude
smaller than the dominant wavelength λ0. To test whether the finite thickness has an effect on the result, a simulation
where the interface was thickened by 20% was run; this caused less than 2% difference in the resulting mixing-height
growth rate ḣ.

A. Effect of finite grid resolution

To verify the resulting LES methodology, we consider a case at lower Re which is accessible to DNS. The key results
from this comparison with DNS are shown in Fig. 3 for a sequence of LES grids. Grid resolution is defined by the
number of grid points per initial perturbation wave length N = ∆/λ0. This value is set to (11, 21, 43, 64) for the
coarse, medium, fine and very fine grids, respectively. We note that the Reynolds number of the finest case is about
4000 by the end of the calculation, which places it in the transitional regime, according to the finding of Cabot and
Cook [8]. All cases for the convergence study were run in the “high-shear” configuration, where the shear velocity
scale was much larger than the RT-velocity scale, viz., ∆V/

√
Agλ0 ≈ 6, where A = 0.5. This is a shear-dominated

case and was found to have the most stringent resolution requirements amongst the range of parameters studied.
The mixing rate ḣ from the LES converges to the DNS for grids with at least 21 points per characteristic wavelength

λ0. The vertical profile of kinetic energy at the time of peak growth rate converges to the DNS for grids with at
least 43 points per λ0. We thus use 43 points per wavelength in the present study, which is more resolved than the
DNS in Ref. [8] (32 points per wavelength). The agreement between LES and DNS is expected, since the flow at
these relatively early times has not yet become fully turbulent. Moreover, the entrainment rate is determined by large
structures, which are captured directly in the LES provided that the grid is sufficiently fine.
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FIG. 3: Comparison of DNS and LES on a sequence of grids. Left: Growth rate of the mixing interface ḣ and plane-averaged
turbulent kinetic energy at the time of peak growth rate t∆V/λ0 = 3. Right: DNS with 64 points per initial perturbation
wave length (solid black line); LES with 64 (dashed black), 43 (green dashed), 21 (blue dashed), and 11 (red dashed) points
per initial perturbation wave length.

k0 Sampling error (εss) Box size error (εbs)

6 .0613 .0347

12 .0419 .0172

24 .0260 -

TABLE I: Table of errors in maximum mixing growth rate (ḣmax) for varying box sizes (Ebs(k0)) and sample size (Ess(k0)).

B. Effect of finite box size

The box size of the simulations must be sufficiently large such that the effects of the periodic boundaries do not
affect the statistics. That is, in wave space, there must be sufficient room in the direction of decreasing wave numbers
for energy to move. We verify that a sufficiently large domain is used by comparing solutions obtained from three
box sizes. For each box size, three independent (but statistically equivalent) initial fields were used to start the
calculation and their averages were compared against the reference solution (the largest domain). Although this is
an approximation, we obtain a clear picture of the convergent behavior as the box size increases. Table I lists the
relative error in the peak growth rate, defined as

εbs (k0) ≡

∣∣∣ḣmax|ref − ḣmax|k0∣∣∣
ḣmax|ref

, (5)

where ḣmax = max
{
ḣ(t)

}
, ḣmax is the mean of the three cases at given k0, | · | is the absolute value and “ref” is

the reference solution. As seen in the table, the error due to the finite box size is at most a few percent.

C. Effect of finite statistical sampling

The final criteria used to validate the fidelity of our simulations is that of statistical convergence. Any two initial
fields will vary by a random phases but will have identical spectra as given by Eqn. 3. Therefore, sufficiently many
samples of the characteristic large structure size λ0 are needed to give results that are independent of the randomness
in the initial condition. Sampling size error is defined as:
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FIG. 4: Combined RT/KH instability with fixed RT-parameters (A, g, λ0) but varying amounts of shear ∆V , with A = 0.5.

Mixing rate ḣ (left) and interface thickness h (right) of the layer as functions of time. Note that the axes are scaled using
the characteristic velocity scale for the RT-problem, VRT =

√
Agλ0. In order of increasing shear, the lines have ∆V/VRT of 0

(blue), 0.3 (green), 0.9 (red), 1.8 (cyan), 3.1 (magenta), and 6.1 (yellow).

εss (k0) ≡

∑N
i=1

(∣∣∣ḣmax − (ḣmax)i

∣∣∣)
Nḣmax

∣∣∣∣
k0

(6)

where N = 3 is the number of independent realizations and ḣmax|i is the value for each realization. The sampling
error decreases for increasing k0, and is found to be 2.6% for k0 = 24.

From Table I, we conclude that k0, corresponding to mode 24, is sufficient to minimize the effect of the finite box
size and sampling error to an acceptable level. Together with the requirement of having 43 points per characteristic
wavelength, the final grids use 1024 × 1024 points in the horizontal directions. With isotropic grid spacing, we take
256 points in the z direction.

III. MIXING RATES FOR COMBINED RT/KH IN NONLINEAR REGIME

Consider a problem with fixed RT-parameters (A, g, λ0) but with varying amounts of shear, i.e., with varying ∆V .

Figure 4 shows the computed mixing rates ḣ versus time for such a problem. The amount of shear is varied in the
figure from none (pure RT) to a very large value(essentially pure KH). Adding an excessive amount of shear clearly
accelerates the mixing as the flow then develops as a KH instability which is characterized by a different time scale. The
linear stability analysis suggests that adding any amount of shear will increase the growth rate, γ, of the instability.
For the spectra given in equation 3, γ(k0) has a linear relationship to the mixing rate, ḣ. Therefore, linear stability
predicts a monotonic increase for the mixing rate with shear addition. However, figure 4 clearly shows that this is
not the case: the case with moderate shear instead has a lower growth rate than the pure RT case. This surprising
result raises several questions. First, what is the physical mechanism by which the addition of shear velocity diverts
or delays the RT instability? Secondly, at what point is this unexpected effect of shear velocity most pronounced for
a given set of parameters defining RT? That is, what is the optimal amount of shear needed to minimize this early
time mixing rate?

As a prelude to investigating these questions, we first note that the mixing rate ḣ and time t in Fig. 4 are scaled
by velocity and time scales characteristic of pure RT problems, i.e., a velocity scale VRT =

√
Agλ0 and time scale

TRT = λ0/VRT . While a pure KH problem would have the same characteristic length scale, λ0, it would have the
velocity scale VKH = ∆V . It is, at this stage, not clear what velocity scale to use for the combined problem, other
than that the combined velocity scale VRTKH should tend to VRT as ∆V → 0 and VKH as ∆V →∞.

While linear stability theory misses the non-monotonic change in growth rate with the addition of shear, we can
still use linear stability to guide the choice of the combined velocity scale VRTKH . Dividing the linear growth rate γ
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FIG. 5: Mixing rate for the combined RT/KH instability. The same cases as in Fig. 4 but scaled by the combined velocity
scale VRTKH .

from (1) by the wavenumber magnitude k yields

γ

k
=

√
1−A2

4

(
kx
k

)2

V 2
KH +

k0
2πk

V 2
RT ,

where the velocity scales for pure RT and KH have been used. For broadband perturbations in 3D this must be
integrated over all orientations kx/k and magnitudes k. However, since streamwise modes grow fastest, it is reasonable
to assume that kx/k approaches 1 after some time. Similarly, the growth rate is primarily given by modes around the

peak, i.e., with k ≈ k0. We then get (with a factor of
√

2π taken out for convenience)

√
2π

γ

k
≈
√

(1−A2)π

2
V 2
KH + V 2

RT ≡ VRTKH ,

which we take as the velocity scale for the combined RT/KH problem.

Figure 5 shows the growth rate ḣ for the same cases, but now with both ḣ and time scaled by the combined
velocity scale. With this scaling the growth rates fall in an enveloped region with pure RT at the top and pure KH
at the bottom. Note that there is a certain degree of collapse in the temporal direction, and that the shape of the
curves are somewhat similar. The similarity of the shapes leads us to characterize each curve by a single number,
which we take as the peak growth rate ḣmax. Figure 6 shows this quantity (scaled by VRTKH) versus the parameter
β ≡ VRT /VRTKH . Note that β is 1 for pure RT and 0 for pure KH mixing, and hence it is a measure of the relative
importance of each phenomenon. The collapse of the peak growth rates onto a single curve is surprisingly good.

To investigate why the data collapse as well as they do, we note that dimensional analysis suggests that ḣmax is a
function of VRT , VKH and A (the other parameters from which a velocity scale can be formed, g and λ0, are included
in VRT ). This can be written as,

ḣmax = VRTKH · f
(

VRT
VRTKH

, A

)
,

where f is some unknown function. Note that the first argument of f is exactly β; in fact, that was why β was chosen
that way in the first place. The collapse of the scaled maximum growth rates in Fig. 6 suggests that the dependence
on A in f is minor, and hence the maximum growth rate can be approximated well as ḣmax ≈ VRTKH · f̃(β), where

f̃ is a reasonably universal function.
We can now attempt to answer one of the questions raised earlier: given fixed RT-parameters, what amount of

shear minimizes the growth rate? This question amounts to minimizing

ḣmax

VRT
=
f̃(β)

β
,

which is shown in Fig. 7. The minimum occurs at βopt ≈ 0.4.
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FIG. 6: Peak growth rate in the combined RT/KH instability as a function of β = VRT /VRTKH . Blue circles denote the 6 cases
in Figs. 4 and 5 with fixed RT-parameters (A = 0.5)and increasing shear, whereas the black triangles denote the remaining 14
cases with different RT and KH parameters. Five of these cases had Atwood numbers of 1/3, 1/3, 3/5, 2/3, 5/7 for β values of
.52, 1.0, .52, .52, 1.0, respectively.
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FIG. 7: Maximum mixing rate ḣmax for fixed RT (left) and fixed KH (right) parameters as functions of the relative amount of
each instability β = VRT /VRTKH . Symbols as in Fig. 6.

The opposite question is whether for fixed KH-parameters it is possible to find non-zero RT parameters that
minimize the growth rate? This question amounts to minimizing

ḣmax

VKH
=

√
(1−A2)π

2

f̃(β)√
1− β2

,

which is also shown in Fig. 7. It is clear that, unlike with adding shear, the addition of gravity monotonically increases
the mixing rate, exactly as predicted by linear stability theory.

IV. MIXING RATE AND THE VERTICAL MASS FLUX

Given the non-monotonic behavior of ḣ with increasing shear-addition, it is instructive to examine this metric more
closely in order to trace the origins of the non-monotonicity. We first note that the mean density profile ρ(z, t) is
observed to be monotonic in z at all times, and hence we can write the mixing-height h, defined in (4), as

h(t) =
2

∆ρ

∫ z0(t)

−∞
(ρ− ρL) dz +

2

∆ρ

∫ ∞
z0(t)

(ρH − ρ) dz ,
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FIG. 8: Comparison of ḣ(t) (lines) and −4ρ′w′(z0, t)/∆ρ (circles) from (7) for three cases with β = 1.0, 0.71, and 0.15 and
A = 0.5.

where z0(t) is the vertical half-point between the two densities, i.e., ρ(z0(t), t) = (ρL + ρH)/2. Taking the time-
derivative of h then yields

ḣ(t) =
2

∆ρ

∫ z0(t)

−∞

∂ρ

∂t
dz − 2

∆ρ

∫ ∞
z0(t)

∂ρ

∂t
dz ,

where the remaining terms in Leibniz’s integral rule (terms including ∂z0/∂t) cancel out. The equation for conservation
of mass (2a) can then be used to replace ∂ρ/∂t by −∂ρw/∂z. Integrating in z then yields, with ρw = 0 at z = ±∞,

ḣ(t) = −4
ρw(z0, t)

∆ρ
≈ −4

ρ′w′(z0, t)
∆ρ

, (7)

where the approximation ρw ≈ ρ′w′ is used; note that DNS and LES results show that this is a very good ap-
proximation. The primes indicate fluctuating quantities, where variables have been decomposed as Φ(x, y, z, t) =
Φ(z, t) + Φ′(x, y, z, t). To verify the accuracy of this relation, we plot for three cases the left and right hand sides of
(7) in Fig. 8. There is no appreciable difference between the two curves, and we can therefore conclude that mixing
rate is proportional to the planar-averaged vertical turbulent mass flux taken at z = z0(t). The turbulent vertical
mass flux can also be written in terms of a correlation coefficient and the individual rms-values as

ρ′w′ = Rρ′w′ρ′rmsw
′
rms . (8)

Fig. 9 shows the three factors in this relation at height z0 at the time of peak mixing rate. As β = VRT /VRTKH
decreases, both ρ′rms and the correlation coefficient Rρ′w′ decrease monotonically. In contrast, the vertical velocity
fluctuation w′rms shows a non-monotonic behavior with a minimum around β ≈ 0.6. This shows that the non-
monotonic behavior of the mixing rate has its roots in the vertical component of the turbulence kinetic energy, and
how this changes with the addition of mean shear. We therefore look more closely at the budget of this quantity.

V. ENERGY BUDGET AND MIXING EFFICIENCY

To gain more insight into the non-monotonic behavior of the vertical kinetic energy w′w′, we want to look at the
energy budget for this quantity. As outlined in the previous section, the link to the mixing rate is through the kinetic
energy at the mixing half-point, i.e., w′w′(z0, t). However, the budget for a global vertical kinetic energy K ′V (to be
defined below) is more easily both defined and interpreted. We therefore proceed by first proposing and verifying a
relationship between w′w′(z0, t) and K ′V , which then allows us to consider a global energy budget for K ′V .

When averaged in the horizontal directions and integrated in the vertical z direction (over L), the energy equation
becomes

d

dt

∫
L

ρuiui
2

dz = − d

dt

∫
L

ρgzdz −
∫
L

τij
∂ui
∂xj

dz (9)
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where the negligible pressure dilation term,
∫
L
p∂ui

∂xi
dz,has been omitted as in [8]. Define the vertical turbulent kinetic

energy, the horizontal mean and turbulent kinetic energy, and the gravitational potential energy as

K ′V =
1

2

∫
L

ρw′w′ dz ,

KH =
1

2

∫
L

ρ u2 dz ,

K ′H =
1

2

∫
L

ρu′u′ dz

P =

∫
L

ρ gz dz ,

and then define Krem as the sum of all remaining terms in the kinetic energy. Krem was below 3.5% of the total
kinetic energy for all cases and time and will henceforth be neglected. We next define the energy released from the
mean velocity and density fields as [8]

δKH = KH(0)−KH(t) ,

δP = P (0)− P (t) ,

and the energy dissipated into heat as

Ψ =

∫ t

0

∫
L

τij
∂ui
∂xj

dzdt′ .

Integrating (9) in time then yields the global energy budget

K ′V +K ′H + Ψ ≈ δP + δKH , (10)

where energy released from the mean fields (right-hand-side) is partitioned between vertical turbulent kinetic energy,
horizontal turbulent kinetic energy and heat. The approximation sign is used as the analysis neglects the small (< 4%)
terms.

We must next establish a link between K ′V and w′w′(z0, t). Since the latter quantity was shown in Section IV to
be responsible for the non-monotonic behavior of the mixing rate, this would tie K ′V to the non-monotonic behavior.

The shape in z of w′w′ is nearly constant in time (approximately resembling a Gaussian), with a width that scales
with the mixing-height h(t) and a peak value that scales with w′w′(z0, t). Hence

K ′V (t)

h(t)
≈ C ρ1 + ρ2

2
w′w′(z0, t) (11)
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is an approximative relation between the global K ′V (t) and the local w′w′(z0, t). Figure 10 shows both sides of this
relation for C = 1.1. There is clearly a strong correlation between the curves. The error in the approximative
relationship (11) can be quantified as the difference between the left- and right-hand sides, normalized by the average
of the two. At the time of peak mixing rate, this error is below 0.085 for all 20 cases. It is clear that the global
measure K ′V well captures the non-monotonic behavior.

Up to this point it has been shown that the mixing rate ḣ(t) is very well approximated by the turbulent mass-flux
at the interface ρ′w′(z0, t), that the non-monotonicity in this mass-flux is due to w′w′(z0, t) at the interface, and
finally that this local vertical kinetic energy can be reasonably approximated by the global vertical kinetic energy
K ′V (t). The energy budget (10) is useful to illuminate the cause of the non-monotonicity. Consider keeping the RT-
parameters fixed while increasing the mean shear (thus lowering β); this would monotonically increase the amount
of energy available for release from the mean flow. The non-monotonicity of K ′V then implies that the efficiency at
which energy is channeled into vertical fluctuations decreases with increasing amounts of mean shear. This can be
quantified by defining a vertical mixing efficiency

ηV ≡
K ′V

δP + δKH

,

which measures how much of the total amount of energy released into the flow contributes to vertical mixing of the
interface. Figure 11 shows this quantity for a range of cases with increasing shear. The efficiency decreases quite
dramatically, by about a factor of two, when going from pure RT to pure KH mixing. It is this decrease that causes
the mixing rate to decrease when small amounts of shear are added. This behavior should perhaps not be surprising,
since gravitational acceleration is directed in the vertical direction whereas shear acts in the horizontal direction.

VI. FLOW STRUCTURES

Figure 12 shows a visualization of the vortical structures in the mixing region at the time of peak mixing rate for
a set of cases. Note that the density has been used to color the structures; hence red areas should be interpreted
as areas of downward motion of heavy fluid. It is clear that the structure of the motions changes dramatically from
the pure RT to the pure KH problems. Pure Rayleigh-Taylor mixing has essentially circular vortices surrounding the
characteristic bubbles and spikes. As shear is added, the structures become progressively more two-dimensional, with
large rollers in the spanwise direction that are connected through small braids. This change in flow structure appears
gradual and monotonic.

This reshaping of the structures can also be seen in the spectra of density at the half-point z = z0, as shown
in Fig. 13. For pure RT mixing (β = 1), the spectra in the x and y directions are identical, with a peak around
wavenumber k0. As the amount of shear is increased, there appears a secondary peak around kx ≈ 2k0 in the
streamwise spectrum, and simultaneously the peak in the spanwise spectrum moves towards lower wavenumbers. We
recall that the mixing rate ḣ has its minimum for β ≈ 0.4, at which point the flow closely resembles the pure KH case
(secondary peak has appeared, spanwise peak started moving towards lower wavenumbers). Thus it makes intuitive
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FIG. 11: Vertical mixing efficiency ηV versus time for 6 cases with fixed RT parameters and increasing shear.

sense that any further addition of shear past this point would begin increasing the mixing rate, as more energy is
released into the flow.

Finally, Fig. 14 shows density contours in planes for increasing amounts of shear. Qualitatively, the case with the
minimum peak mixing rate has clearly changed from the pure RT structure towards the characteristic KH structure.

VII. SUMMARY

The combined Rayleigh-Taylor/Kelvin-Helmholtz instability is studied mainly through LES. While linear stability
theory predicts that the growth rate should increase monotonically with both increasing amounts of shear (for fixed
gravitational parameters) and increasing amounts of gravity (for fixed shear parameters), the simulations in the early
nonlinear regime show a more complex and non-monotonic behavior. With fixed RT parameters, addition of a small
amount of mean shear actually decreases the nonlinear mixing rate during the early nonlinear stage. The peak mixing
rate reaches a minimum around β ≡ VRT /VRTKH ≈ 0.4. Thus the optimum amount of shear (that minimizes the

peak mixing rate for fixed RT parameters) is ∆Vopt ≈ 1.8
√
Agλ0/(1−A2).

The analysis, both quantitative and visual, suggests that the addition of a small amount of shear changes the
structure of the instability such that less energy is channeled into vertical mixing. At the point of minimum peak
mixing rate, the structure has changed to largely resemble a pure KH instability. Further increasing the shear then
simply increases the amount of energy available, and thus increases the mixing rate again.
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